Dust mineralogy and variability of the inner PDS 70 disk: Insights from JWST/MIRI MRS and Spitzer IRS observations

The inner disk of the young star PDS 70 may be a site of rocky planet formation, with two giant planets detected further out. Recently, James Webb Space Telescope/Mid-Infrared Instrument (JWST/MIRI) Medium-Resolution Spectrometer (MRS) observations have revealed the presence of warm water vapour in the inner disk. Solids in the inner disk may inform us …

MINDS. JWST-MIRI Observations of a Spatially Resolved Atomic Jet and Polychromatic Molecular Wind Toward SY Cha

The removal of angular momentum from protostellar systems drives accretion onto the central star and may drive the dispersal of the protoplanetary disk. Winds and jets can contribute to removing angular momentum from the disk, though the dominant process remain unclear. To date, observational studies of resolved disk winds have mostly targeted highly inclined disks. …

MINDS: The DR Tau disk: II. Probing the hot and cold H2O reservoirs in the JWST-MIRI spectrum

The Medium Resolution Spectrometer (MRS) of the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) gives insights into the chemical richness and complexity of the inner regions of planet-forming disks. Several disks that are compact in the millimetre dust emission have been found by Spitzer to be particularly bright in H2O, which is …

MINDS: A multi-instrument investigation into the molecule-rich JWST-MIRI spectrum of the DF Tau binary system

The majority of young stars form in multiple systems, the properties of which can significantly impact the evolution of any circumstellar disks. We investigate the physical and chemical properties of the equal-mass, small-separation (~66 milliarcsecond, ~9 au) binary system DF Tau. Previous spatially resolved observations indicate that only DF Tau A has a circumstellar disk, …

MINDS. Hydrocarbons detected by JWST/MIRI in the inner disk of Sz28 consistent with a high C/O gas-phase chemistry

With the advent of JWST, we are acquiring unprecedented insights into the physical and chemical structure of the inner regions of planet-forming disks where terrestrial planet formation occurs. Very low-mass stars (VLMSs) are known to have a high occurrence of the terrestrial planets orbiting them. Exploring the chemical composition of the gas in these inner …

MINDS: Mid-infrared atomic and molecular hydrogen lines in the inner disk around a low-mass star

Understanding the physical conditions of circumstellar material around young stars is crucial to star and planet formation studies. In particular, very low-mass stars (M★ < 0.2 M⊙) are interesting sources to characterize as they are known to host a diverse population of rocky planets. Molecular and atomic hydrogen lines can probe the properties of the …

Abundant hydrocarbons in the disk around a very-low-mass star

NASA press Release ESA Press Release Astrobiology Very-low-mass stars (those less than 0.3 solar masses) host orbiting terrestrial planets more frequently than other types of stars. The compositions of those planets are largely unknown but are expected to relate to the protoplanetary disk in which they form. We used James Webb Space Telescope mid-infrared spectroscopy …

MINDS: Hybrid pipeline for the reduction of JWST/MIRI-MRS data

The MINDS hybrid pipeline is based on the JWST pipeline and routines from the VIP package (ascl:1603.003) for the reduction of JWST MIRI-MRS data. The pipeline compensates for some of the known weaknesses of the official JWST pipeline to improve the quality of spectrum extracted from MIRI-MRS data. This is done by leveraging the capabilities …

MINDS. The DR Tau disk I: combining JWST-MIRI data with high-resolution CO spectra to characterise the hot gas

The MRS mode of the JWST-MIRI instrument has been shown to be a powerful tool to characterise the molecular gas emission of the inner region of planet-forming disks. Here, we analyse the spectrum of the compact T-Tauri disk DR Tau, which is complemented by high spectral resolution (R~60000-90000) CO ro-vibrational observations. Various molecular species, including …

MINDS: The JWST MIRI Mid-INfrared Disk Survey

The study of protoplanetary disks has become increasingly important with the Kepler satellite finding that exoplanets are ubiquitous around stars in our galaxy and the discovery of enormous diversity in planetary system architectures and planet properties. High-resolution near-IR and ALMA images show strong evidence for ongoing planet formation in young disks. The JWST MIRI mid-INfrared …